Summary
References
Introduction
Szent-Gyorgyi's lecture proposing the solid-state electronic processes could play a functional
role in living organisms was given on March 21 1941 as World War II literally raged over Europe.
While it was the lecture that provided a seminal idea, it was the war itself that provided the instruments
to explore the idea and the concepts to strengthen it.
Recognition of the fact that national strength rested primarily upon science and technology
produced an unparalleled outpouring of funds and facilities for scientific investigation. Interdisciplinary
teams worked at both basic and applied levels with a speed and intensity motivated by a genuine
concern for national survival. In a few short years major advances were made not only in devices and
technologies, but also in ideas and concepts that were to have far-reaching consequences. When Szent-
Gyorgyi made his suggestion, all such solid-state electronic mechanisms were little more than
laboratory curiosities. War-related investigations on the basic electronic structure of matter enabled
Shockley, Bardeen and Brattain to develop the transistor, an electronic solid-state device working with
a few volts and a trickle of current that duplicated the functions of vacuum tubes many times larger in
size and requiring hundreds of times the amount of electrical power. The applications of electrical
technology shifted away from concepts of power engineering with large scale currents and voltages to
electronic engineering using devices of microscopic size powered by minuscule currents. Today the
number and variety of uses of such solid-state electronic devices is ever increasing.
Before the war there had been, as always, an interest in how the brain and nervous system
functioned. Since the nature of the nerve impulse had been determined, the emphasis was on how this
signal, coupled with the anatomical complexity of the nervous system, could produce the integrated
"higher" nervous functions such as memory, and thought. An informal group of mathematicians,
physiologists, and others from Hanard and MIT that had been interested in this problem became the
nucleus for the United State's computer development program. As a result many of the early concepts
built into the machines were derived from neurophysiological concepts, the functions and organizations
of the living systems becoming the models for the machine systems. With progressive advances in
technology, the need for this relationship diminished and by the late 40's computer technology and
information theory were sufficiently advanced to begin the development of specific concepts leading to
the new science of "cybemetics"-a word coined by Norbert Weiner, a prominent mathematician at MIT,
referring to the process of communication and control, whether in the machine or living organism (I).
In the 50's a number of the scientists associated with the developments in this field (notably von
Neumann and McCulloch) began to try to apply these advanced concepts of cybernetics to the problem
of integrated brain function (2).
Even in the more mundane area of instrumentation, war-related needs for sensitivity and
stability in electrical measurement led to the development of entirely new circuits and measuring
devices.
The result of all of this was a very real scientific revolution: in a relatively short time science
moved from the Victorian age to the electronic age. Two aspects of the new knowledge were of
fundamental importance to biology; cybernetics and solid-state electronics. One would think that the
intellectual ferment surrounding those developments would have been applied to a re-evaluation of the
old concepts denying any relationship between electrical forces and living things. This, however, did
ELECTROMAGNETISM & LIFE - 21