I have figured out...

1. What is the chemical, and electrically cellular, definition of argyria.
2. How to...
a. Prevent argyria by stabilizing a saturation of silver in the body serving as...
b. A bioavailable nutrient for spontaneous regeneration under the right circumstance of debridement.
c. Debridement is a controlled aggravation of a wound via salt used as a stressinducer. Debridement is generally intended to keep the wound open, prevent closure or premature termination of regeneration.
d. Water is used to keep the wound moist to facilitate the movement of silver ions throughout the tissues.
e. A wound need not be recent. It can be an old scar in need of repair.
3. Thus, I can fight any and all infectious disease. [mirrored copy]
4. And I can manage any and all mental illness with the help of beeswax: an unknown remedy[*] for dealing with the gastric consequence of absorbing a massive quantity of silver.
5. Consequently, it is not necessary to avoid saturating the body with silver to prevent this man's condition of ARGYRIA.

My Gold Resumé

Twenty years ago, I discovered...

1. How to find the Greatest Common Divisor of two or more integers, simultaneously, in a unique way..
2. Which exhibit the properties of Golden Ratios to an infinite degree of expansive integration.
a. The irrational fraction of 1.618 is a popular example since its properties are evident in our Earth.
b. But the whole number of 1 , unity, is another example - less well known, but far simpler by design.
3. These infinite sets of Golden Ratios can be expressed as:
a. The irrational, real number solutions to polynomials in one unknown - one degree polynomial per solution (see the link under point \#2), which satisfy the...
b. Proportional relations between specific pairs of diagonals within odd-sided, regular polygons (ditto), and also satisfy...
c. All of the possible pathways a beam of light can take as it passes and reflects through a specific number of sandwiched panes of glass. The approximate solutions of each order/degree Golden Polynomial can be derived from these number series. So, two glass panes will produce a series of Fibonacci numbers whose ratios between adjacent numbers in the series will approximate the solutions of the quadratic ($2 \underline{\text { nd }}$ degree) Golden Polynomial.

Two glass panes are an example of Earth's Golden Ratio - 1.618034

If a beam of light is incident upon two sheets of glass in contact,
part of the light will be transmitted, part absorbed and the remainder reflected. There will be multiple reflections. The number of different paths followed within the glass before the ray emerges depends on the number of reflections which the ray undergoes. The number of emergent rays is a Fibonacci number. This is indicated in figure 12.1:

Fig. 12.1. Multiple reflections
4. Only a handful of this infinite variety of Golden Ratios are applicable to a binary world in which electricity, chemistry and mathematics always takes on a dualistic pairing of opposites, positivity and negativity, and the more ancient complementation between the Yang and Yin of the Tao.
a. This select handful is derived from the finite set of five Fermat primes by...
b. Subtracting the number 1 from any Fermat Prime and then dividing by 2 will produce the degree polynomial in one unknown to which this handful of Golden Polynomials are applicable to the chemistry and electricity of a binary world. For example...
c. The $2^{\text {nd }}$ Fermat Prime, namely: the whole number 5 , is one more than twice the quadratic polynomial $\left\{X^{2}-X-1=0\right\}$ to which +1.618 and -0.618 are its two solutions.
d. Fermat's 3 rd Prime, namely: the whole number 17, is another example of the more practical side to this infinite study of the Golden Ratio.
5. This study predicts the aesthetic style of anthropology within a planet's living potential from which are derived the applicable aesthetic proportions to which every living creature on a planet will recognize as either harmonious or dissonant. On Earth, this results in the following aesthetics which we have come to value as being 'normal' (for ourselves)...
a. 120 Letters (phonemes) of Sanskrit grouped into fifty letters among the major chakras and seventy letters within the minor chakras,
b. Seven Major and Five Minor Chakras positioned along the spinal meridian,
c. Twelve Astrological Houses and Twelve Sunsigns,
d. Twelve Chromatic, Seven Diatonic and Five Pentatonic Notes,
e. Pure Intervals of Music derived from the increasing approximations of the Golden Ratio (utilizing the Fibonacci Numbers resulting in the dominant harmonies of the tonic $=1: 1$, octave $=2: 1$, perfect.fifth $=3: 2$, major.sixth $=5: 3$, minor. $\mathrm{sixth}=8: 5$; and their reciprocals: perfect.fourth $=4: 3$, minor.third $=6: 5$, major.third=5:4) along with an Equal Temperament Scale derived from the twelve logarithmic divisions of the two to one (2:1) proportioned Octave spanning any two tonics,
f. Expansion Rate for the Cochlea of the Inner Ear tuned to the ratio of two to one (2:1) spanning one Octave between the tonic of any two adjacent scales of music, and...
6. From this study of Golden Ratios can be inferred a complimentary system of Aesthetic Proportions based on the specific pairings of diagonals, and their proportional ratios, within Even-Sided, Regular Polygons which are infinite in variety.
7. Within this unlimited set of Even-Sided, Regular Polygons, there are only five proportions which satisfy a simple system of duality applicable to a binary world of chemical and electrical constraints similar to what we are familiar with. These special case ratios go by the name of: Silver Ratios.
a. The most popular Silver Ratio - that we commonly know of - is the ratio of 2.414 , also known as one plus the square root of two $(1+\sqrt{2})$ and its reciprocal value of 0.414 resulting from dividing the number one by $2.414 \ldots$
i. Evident as the ratio of the side of a regular octagon per its surrounding square and vice versa. In other words, double the number of sides of a square by cutting off its corners at a 45° angle to create an octagon. The sides of the surrounding square will also appear as a pair of parallel diagonals inside the octagon creating the familiar pound sign: \#

a

$a \div b=1+\sqrt{2}=2.414 \ldots$

ii. Evident within the dimensions of the United States dollar bill, and...
iii. Evident within the floor plan of garden apartments built in Ostia, Italy, during the $1^{\text {st }}$ and $2^{\text {nd }}$ century A.D. by the Romans. The geometry of this unique floor plan was penned the Sacred Cut by the Danish Engineer Tons Brunes, in his book: "The Secrets of Ancient Geometry and Its Use", for it can be drawn using only straight-edge and compass effectively squaring the circle by cutting the square which is considered a sacred act.
b. This system of aesthetic design also exhibits a unique style for its:
i. Sanskrit,
ii. Chakras,
iii. Sixteen Astrological Houses and Sixteen Sunsigns,
iv. Sixteen Chromatic, Nine Diatonic and Seven (equivalent to our planet's) Pentatonic Notes for this planetary aesthetic system,
v. Pure and Equal Temperament Scales,
vi. Expansion Rate for the Cochlea of the Inner Ear tuned to the ratio of five halves to one ($5 / 2: 1$) making their so-called Octave (the span of one tonic to the next) a distance of frequency amounting to the interval of a major tenth (a perfect eighth plus a major third). This helps to explain Richard Wagner's frequent use of chords exceeding the norm since his soul retains the memory of his life-experiences on Maldek: the name I shall assign to the remnant of a prior planet we have come to know as the Asteroid Belt between Mars and Jupiter,
vii. Primary Salt within its creature's blood and within the oceans of its planet.
8. An alternative name for this Silver Ratio could be the Pell Ratio as it was John Pell, the mathematician, who created the Pell series of numbers $\{1,2,5,12$, $29,70 \ldots\}$ from which this ratio of one plus the square root of two (2.414) can be progressively approximated: $70 \div 29=2.41379$ to anal accuracy.
a. The Silver Ratio is the common aesthetic theme for our solar system, including our: Sun, Venus, Mars and the Asteroid Belt between Mars and Jupiter as is evident from the dominant salts of each of the foregoing planetary and stellar bodies.
i. The Sun is a planet with a double-layered ocean, or - if you prefer to call it - an atmosphere, composed of neon and silicon plasmas covering its Calcium AluminoFerrite $\left\{\mathrm{Ca}_{2}(\mathrm{Fe} / \mathrm{Al})_{2} \mathrm{O}_{5}\right\}$ surface. Lightning bolts shoot up from the planetary surface of the Sun to its plasma atmosphere yielding solar flares extending out into space. The Pell ratio is approximated to 2.339 if we assume a fifty/fifty ratio between the aluminum and iron varieties of this complex mineral. According to the Wikipedia article, linked above, calcium forms oxides distinct from both the iron and aluminum doing the same. So, I'm going to engage in an unusual scheme to calculate the proportional aesthetic theme for this 'stellar' planet of our solar system. I'm going to treat the Calcium Oxide as the anion and the Iron and Aluminum Oxides as the cations to try and figure out this planet's proportionally, ratioed aesthetic theme. The atomic weight of iron oxide ($\mathrm{Fe}_{2} \mathrm{O}_{3}=160=\left\{\mathrm{Fe}_{2}=112+\mathrm{O}_{3}=48\right\}$) divided by the atomic weight of two calcium oxide molecules ($\{\mathrm{CaO}\}_{2}=112=2 \times 56=\{\mathrm{Ca}=40+\mathrm{O}=16\}$) is 1.42857 . Conversely, the atomic weight of aluminum oxide ($\mathrm{Al}_{2} \mathrm{O}_{3}=102=\left\{\mathrm{Al}_{2}=54+\mathrm{O}_{3}=48\right\}$) divided by the atomic weight of two calcium oxide molecules ($\left\{\mathrm{CaO}_{2}=112=2 \times 56=\{\mathrm{Ca}=40+\mathrm{O}=16\}\right.$) is 0.91071 . These two separate results for the ratios of Iron and Aluminum Oxides are then added to each other $(2.33928=1.42857+0.91071)$ to get the total ratio of Calcium AluminoFerrite on the Sun's planetary surface. Or for a wacky alternative, the combined atomic weights ($151.768=111.69+40.078$) of the cations of Iron $\left(\mathrm{Fe}_{2}=55.845 \times 2=111.69\right)$ plus an anion of Calcium ($\mathrm{Ca}=40.078$) are divided by the atomic weights of the cations of Oxide $\left(\mathrm{O}_{4}=15.999 \times 4=63.996\right)$ resulting in a proportional relationship of 2.372 (151.768 $\div 63.996$).
ii. Venus: Dipotassium Hydrogen Phosphate $-\mathrm{K}_{2} \mathrm{HPO}_{4}$. NASA has stated that the surface of Venus is largely composed of the usual silicates plus this material. When the atomic weight of the phosphate cation $\left(\mathrm{PO}_{4}=94.97\right)$ is divided by the atomic weight of the dipotassium hydrogen
combination of anions $\left(\mathrm{K}_{2} \mathrm{H}=79.204\right)$, the result is an approximation of one-half - or twice its reciprocal - of the Pell ratio: 1.199 is one-half of 2.398 and 0.834 is twice the value of 0.417 .
iii. Mars: Calcium Sulphate. NASA is also the claimant for what non-silicate compound predominantly lies on the surface of Mars along with iron oxide as its secondary material. The atomic weight of Sulphate divided by the atomic weight of Calcium is approximately 2.4 , or more precisely: $2.3967=\left(\left\{\mathrm{S}=32.06+\left[\mathrm{O}_{4}=63.996<15.999 \times 4>\right]\right\} \div \mathrm{Ca}=40.078\right)$
iv. The Asteroid Belt is a remnant of the planet Maldek whose dominant oceanic/blood salt had been: Sodium Ammonium Sulphate $=\mathrm{NaNH}_{4} \mathrm{SO}_{4}$. This is my hunch until we find out differently. The atomic weights of Sodium ($\mathrm{Na}=22.9898$) and Ammonium ($\mathrm{NH}_{4}=15.01464=\{\mathrm{N}=14.0067+$ $\left.\left.\mathrm{H}_{4}=4.03176=[4 \times \mathrm{H}=1.00794]\right\}\right)$, when added together $(22.9898+15.01464=38.00444)$ yield their combined atomic weight of $38.00444=$ NaNH_{4}. The atomic weight of the Sulphate cation $\left(\mathrm{SO}_{4}=96.0626=\left(\mathrm{S}=32.065+\left\{\mathrm{O}_{4}=63.9976=[4 \times 15.9994]\right\}\right)\right.$ is divided by the combined atomic weights of Sodium and Ammonium to yield $96.0626 \div 38.00444=2.52767$ and a close approximation to the Silver Ratio predominating in our Solar System.
b. Only the Earth, and possibly our Moon, exhibit an aesthetic proportion foreign to our solar system: the Golden Ratio of 1.618 approximated by the atomic weight of a chlorine atom (35.453) divided by the atomic weight of a sodium atom (22.9898) yields 1.5421. Not bad if you're trying to approximate the Golden Ratio of 1.618034 ! In the study of aesthetic designs of Planetary Anthropology, the accuracy of science and technology play a mere supportive role, probably because we're looking for pattern recognition by the mind's reflexes which don't process sensory stimulation based on anal accuracies, but on broad generalizations.
9. All of this knowledge points to an understanding of aesthetics as a precursor to the study of Planetary Anthropology.

